Silver nanoparticles cause complications in pregnant mice.
نویسندگان
چکیده
BACKGROUND Silver nanoparticles (AgNPs) have attracted much interest and have been used for antibacterial, antifungal, anticancer, and antiangiogenic applications because of their unique properties. The increased usage of AgNPs leads to a potential hazard to human health. However, the potential effects of AgNPs on animal models are not clear. This study was designed to investigate the potential impact of AgNPs on pregnant mice. METHODS The synthesis of AgNPs was performed using culture extracts of Bacillus cereus. The synthesized AgNPs were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy. AgNPs were administrated into pregnant mice via intravenous infusion at 1.0 mg/kg doses at 6.5 days postcoitum (dpc). At 13.5, 15.5, and 17.5 dpc, the pregnant mice were euthanized, and the embryo and placenta were isolated. The meiotic status of oocytes was evaluated. DNA methylation studies were performed, and aberrant imprinting disrupted fetal, placental, and postnatal development. Quantitative real-time polymerase chain reaction analysis and Western blot were used to analyze various gene expressions. RESULTS The synthesized AgNPs were uniformly distributed and were spherical in shape with an average size of 8 nm. AgNPs exposure increased the meiotic progression of female germ cells in the fetal mouse ovaries, and maternal AgNP exposure significantly disrupted imprinted gene expression in 15.5 dpc embryos and placentas, such as Ascl2, Snrpn, Kcnq1ot1, Peg3, Zac1, H19, Igf2r, and Igf2; DNA methylation studies revealed that AgNPs exposure significantly altered the methylation levels of differentially methylated regions of Zac1. CONCLUSION The results from this study indicated that early exposure to AgNPs has the potential to disrupt fetal and postnatal health through epigenetic changes in the embryo and abnormal development of the placenta. These results can contribute to research involved in the safe use of various biomedical applications of AgNPs and improves the understanding of the development of AgNPs in biomedical applications.
منابع مشابه
The Effect of Silver Nanoparticles on Wounds Contaminated with Pseudomonas aeruginosa in Mice: An Experimental Study
The microorganisms have been usual noted as the major cause of delayed wound healing. Pseudomonas aeruginosa is the most common pathogen causing these infections. Silver nanoparticles (AgNPs) show ample antibacterial activities. In present study, the effect of AgNPs alone and in combination with tetracycline investigated on inoculated wounds with Pseudomonas aeruginosa in mice. Twenty mice anes...
متن کاملThe Effect of Silver Nanoparticles on Wounds Contaminated with Pseudomonas aeruginosa in Mice: An Experimental Study
The microorganisms have been usual noted as the major cause of delayed wound healing. Pseudomonas aeruginosa is the most common pathogen causing these infections. Silver nanoparticles (AgNPs) show ample antibacterial activities. In present study, the effect of AgNPs alone and in combination with tetracycline investigated on inoculated wounds with Pseudomonas aeruginosa in mice. Twenty mice anes...
متن کاملEffects of silver nanoparticles on Staphylococcus aureus contaminated open wounds healing in mice: An experimental study
The microorganisms have been noted as the main cause of delayed wound healing.The most common pathogen causing the wound infections is Staphylococcus aureus. Silver nanoparticles (AgNPs) show ample antibacterial activities. In the present study, the effect of AgNPs on mouse wounds inoculated with S. aureus was investigated. Sixty male mice (20 to 30 g) were anesthetized, full-...
متن کاملBlood toxicity of silver nanoparticles in Pregnant Wistar Rats
Background: Investigation of toxicity of silver nanoparticle, especxially blood toxicity, is necessary because this nanoparticle is used a lot in diffrerent parts of life and invironment. The aime of this is evaluation the effects of silver nanoparticles with different concentrations on blood cells pregnant Wistar rats. Materials and Methods: In this case control study, 30 pregnant rat wer...
متن کاملToxicity Effect of Silver Nanoparticles on Mice Liver Primary Cell Culture and HepG2 Cell Line
Nano-silver (AgNP) has biological properties which are significant for consumer products, food technology, textiles and medical applications (e.g. wound care products, implantable medical devices, in diagnosis, drug delivery, and imaging). For their antibacterial activity, silver nanoparticles are largely used in various commercially available products. Thus, the use of nano-silver is becoming ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of nanomedicine
دوره 10 شماره
صفحات -
تاریخ انتشار 2015